Student Projects

Showing results for 
Search instead for 
Did you mean: 

Lightning Warning System using an Electric Field Mill, Republic of Korea

Contact Information

University: Korea Maritime University

Team Member(s): Chang-hwan Jin, Gi-woo Jeong, Dong-kee Oh, Hyun-ji Noh

Faculty Advisors: Prof. Gyung-suk Kil

Email Address:

Country: Republic of Korea

Project Information

Title: Lightning Warning System using an Electric Field Mill (EFM)

This project deals with the development of lightning warning system using an Electric Field Mill  and LabVIEW device. Lightning Warning System can forecast the possibility of lightning strike. This system plays an important role in protecting human and devices from Lightning strike


LabVIEW 2010 DS2 ver. , DAQmx , Touch panel module, DAQ-USB6212

The Challenge:

- Ligtning Warning system using a weather forecast type picture and electric field intensity graph

- An all-time diagnosis system established using portable EFM and touch panel PC.

- Client PCs can tansmit data to server PC.


The Solution:


Lightning causes serious damages to electrical power systems, buildings and human. For the last decades, such damages occurred not only on the ground but on flights and ships as well due to lightning strikes. Many techniques related to lightning protection have been researched.  A good example solution is to forecast the occurrence of lightning by the measurement of ground-level electric field intensity. With this background, we proposed a Lightning Warning System(LWS) using an Electric Field Mill(EFM).


Fig.1 Example damages caused by lightning strike


sdsd.jpgFig. 2 Prototype EFM

Fig. 2 shows a configuration of the prototype EFM our team made. The EFM is  based on electrostatic induction method and consists of two vanes ; a sensing vane  which is fixed and periodically exposed to electric field, and a rotating vane to shield electric field. The sensing vane collects electric charges and transfer to the amplifier via RC integrator. The rotating vane is driven by a brushless DC(BLDC) motor to acquire long life of the EFM function. The speed of the rotating vane is monitored by a photocoupler and is controlled constantly by a DAQ.

We carried out a calibration experiment to know the electric field intensity from the measured voltage signal by the EFM.  Figure 3 shows the calibration setup for the EFM. Sensitivity of the EFM was calibrated at 0.85[V/kV/m] to estimate electric field intensity up to 35[kV/m].


Fig. 3 Calibration setup

Fig. 4 EFM's characteristic graph



Fig. 5 System configuration

VIs were divided into client and server. DAQ-usb 6212 process measures data and controls the EFM. The measured data are displayed on the panel PC and transmit to server PC by wireless LAN.


Client VI shows in Figure 6. The first tab displays electric field intensity and rotating speed of the EFM. The second tab is composed of DAQ setting, communication(TCP/IP), and error.


(a) Fabricated touch panel PC

(b) Client VI's front panel

Fig. 6 Client Divice


Server VI shows received data from each client device and location on the map as shown in Figure 7. Also, picture rings on Figure 8 change depending on electric field intensity.


     Fig. 7 Front panel of the server VI's

Fig. 8 Lightning warning level and picture ring

We installed the EFM at five locations as shown in Figure 9.


Fig. 9 Installation of EFMs

We acquired data during one month. An example is shown in Figure 10. Electric field intensity is about 2.5kV/m on sunny day, and cloudy day is higher than 15kV/m.

fig a.JPG

(a) sunny day

fig b.JPG
(b) Cloudy day
Fig. 10 Changes of electric field intensity

We proposed a LWS which is composed of electric field milland operating system based on NI-DAQ and LabVIEW program. It is expected that the LWS can predict an occurrence of lightning and cope with lightning damages in areas.



well- it would be g8 for world

g8 work guys...all the best!!!!!!


If have a question about this project!

send to me < email>


nice project-

good luck~


very innovative good job guys.