Example Code

Generating Lissajous Curves Using LabVIEW

Products and Environment

This section reflects the products and operating system used to create the example.

To download NI software, including the products shown below, visit ni.com/downloads.

    Software

  • LabVIEW
  • Other

Code and Documents

Attachment

Download All

Overview

This example shows how you can create graphs of Lissajous curves basically.

 

Description

In mathematics, a Lissajous curve /ˈlɪsəʒuː/, also known as Lissajous figure or Bowditch curve /ˈbaʊdɪtʃ/, is the graph of a system of parametric equations

{\displaystyle x=A\sin(at+\delta ),\quad y=B\sin(bt),}x=A\sin(at+\delta ),\quad y=B\sin(bt),

which describe complex harmonic motion. This family of curves was investigated by Nathaniel Bowditch in 1815, and later in more detail by Jules Antoine Lissajous in 1857.

The appearance of the figure is highly sensitive to the ratio a/b. For a ratio of 1, the figure is an ellipse, with special cases including circles (A = B, δ = π/2 radians) and lines (δ = 0). Another simple Lissajous figure is the parabola (b/a = 2, δ = π/4). Other ratios produce more complicated curves, which are closed only if a/b is rational. The visual form of these curves is often suggestive of a three-dimensional knot, and indeed many kinds of knots, including those known as Lissajous knots, project to the plane as Lissajous figures.

Visually, the ratio a/b determines the number of "lobes" of the figure. For example, a ratio of 3/1 or 1/3 produces a figure with three major lobes (see image). Similarly, a ratio of 5/4 produces a figure with five horizontal lobes and four vertical lobes. Rational ratios produce closed (connected) or "still" figures, while irrational ratios produce figures that appear to rotate. The ratio A/B determines the relative width-to-height ratio of the curve. For example, a ratio of 2/1 produces a figure that is twice as wide as it is high. Finally, the value of δ determines the apparent "rotation" angle of the figure, viewed as if it were actually a three-dimensional curve. For example, δ = 0 produces x and y components that are exactly in phase, so the resulting figure appears as an apparent three-dimensional figure viewed from straight on (0°). In contrast, any non-zero δ produces a figure that appears to be rotated, either as a left–right or an up–down rotation (depending on the ratio a/b).

 

Requirements

Software:

  • LabVIEW 2012 (or compatible)

Steps to Implement or Execute Code

1.Run the VI.
2.Explore the block diagram and read comments to better understand.

 

Additional Information or Resources

 

2012.png

 

**This document has been updated to meet the current required format for the NI Code Exchange.**

ColeR
Field Engineer

Example code from the Example Code Exchange in the NI Community is licensed with the MIT license.