LabVIEW Real-Time Idea Exchange

Community Browser
About LabVIEW Real-Time Idea Exchange

Have a LabVIEW Real-Time Idea?

  1. Does your idea apply to LabVIEW in general? Get the best feedback by posting it on the original LabVIEW Idea Exchange.
  2. Browse by label or search in the LabVIEW Real-Time Idea Exchange to see if your idea has previously been submitted. If your idea exists be sure to vote for the idea by giving it kudos to indicate your approval!
  3. If your idea has not been submitted click New Idea to submit a product idea to the LabVIEW Real-Time Idea Exchange. Be sure to submit a separate post for each idea.
  4. Watch as the community gives your idea kudos and adds their input.
  5. As NI R&D considers the idea, they will change the idea status.
  6. Give kudos to other ideas that you would like to see in a future version of LabVIEW Real-Time!
Top Kudoed Authors
User Kudos Count
1
1
1
cancel
Showing results for 
Search instead for 
Did you mean: 
Post an idea

Currently, on the cRIO-903x series controllers, the Chassis Temperature and the USER1 push button are only available on the FPGA http://digital.ni.com/public.nsf/allkb/75E039282A8B691886257E450049C7B6 and require the chassis to operate in a Hybrid Mode in order to use both the Scan interface and those chassis I/O options.

 

The cRIO-902x series allowed for both of these I/O options to be accessed in the real-time OS directly. This small feature would add convenience on the cRIO-903x series controllers.

Hi,

 

I noticed there seem to be no way to guarantee the state of an output module controlled by a scan engine in case the RT Application (or the Host Application, depending who is controlling the chassis) crashs. With FPGA one can program some kind of watchdog setting back the output values of a module in case the RT Exe fails. With Scan there just seem to be no possibility.

 

This is why I think adding a FailSafe Value for a Scan I/O node could be a creat idea. in ase the RT application got aborted  or stops  without cleanup, the output value would not be random no more but set back to their FailSafe value. I imagine it could look like that:

 

failsafe.png

 

What do you think about it?

Many measurement and process control application run at relatively slow rates (<100Hz). Using SCAN Engine on the CompacRIO for data acquisition is ideal for these applications because you don't need to program the FPGA and all the measurement and control logic can be implemented on the Real-Time controller.

 

 

In many cases you want to process your data before you analize it. Currently you only have the ability to get the raw measurement data from the AI modules, so you need to add the data processing code to your existing LabVIEW program. It would be helpful if the SCAN engine could offload some of the data processing (ex. lowpass filter or sample average) to the FPGA and provide the user with already processed data. For example, this functionality can be added to the module configuration page:

 

SCAN Engine.png   

The real-time controllers have a "Time server" IP input in their setup. That is great, but it is not great that the time server has to be a piece of NI software (Logos). If it was possible to specify an NTP server for example (and/or other standard protocols), this feature would be much more useful.

 

Most of the time we need the PACs to be synced with a third party system.

Hello,

 

It would be nice to had the ability to create more than one RT target in a project with the same IP address.

For the moment, if you try to use 2 same IP address, The LabVIEW IDE don't let you save your modifications ! Smiley Sad

 

You may say WTF !!!! The manu has so curious ideas !!!!

 

My need is for example to had 2 configurations for 1 only RT CRio.

 

  • 1 configuration in Scan Interface 
  • 1 configuration in FPGA interface

Or an other way to use multiples targets ...

 

  • 1 project linking to Version 1 sources
  • 1 project linking to Version 2 sources

Yopu may say this can be done by using different build specifications.

 

I will say yes ... But my need is to separate the two versions of LabVIEW sources !

=> 1 project/target linked to an autopopulating folder in version a

=> 1 project/target linked to an autopopulating folder in version b

 

=> So my need is to be abble to use RT Targets as "Target versions"

=> To be abble to do this ... i need to create multiple targets with identical IP addresses. Smiley Wink

 

Thanks for reading.

 

Manu.

Currently a VI running in a Real Time environment does not support run time menus.  I understand the restriction, but what I find odd is VIs that have the menu reference wire cannot compile for RT targets.  This may seem like no big deal, because why would you have a menu reference wire, but not use it?  But I have come to find two examples that make RT code a bit more difficult due to this issue.

 

If I have a polymorphic VI, and one of the polymorphic types has a menu reference terminal, then I can't use that polymorphic VI in an RT VI, even if the instance that is being used doesn't use the menu reference.  One work around for this is to wrap the entire VI that does use the menu reference (terminals and all) in a conditional disable structure so that it does nothing on RT.

 

Another issue comes in the form of templates.  I have various temples to get code started, and most of it can run on RT or other targets without any need to change the code, just place conditional disable structures where needed.  But I found one issue where I can't have an event structure on RT, that has the Shortcut Menu Activation? event, because it generates a menu reference wire. Ideally this event just can't be generated on RT, so the compiler would know to not include it, and it would allow the VI to run on RT.  Same for polymorphic VIs that have a menu reference in one of its instances.

 

A better solution might be to lift all restrictions of using the menu reference wire on RT, and just assume that using the menu reference on RT does nothing, like a No-Op.  Optionally an error could be generated if one of the menu reference functions are used, but for the sake of simplicity I'm not sure that is needed.  What I'm really looking for, is a way to allow VIs to run on RT, that have menu reference wires types, but aren't used.  Note the VI below which can't run on RT and the reason given is that the menu reference can't be used on RT, but it isn't being used, it is just wired to a disabled case.

 

It is allmost impossible to find errors in "Reentrant SUBVI's" without the debugging possiblities.
 
 
 
 

Dual network interfaces is often part of the requirements for redundancy, however in such cases it is also very common to specify that the behaviour of borth of these should be identical. You see it in subsea control systems where they have an "A" and "B" channel, you see it topside where the device might need to be on two networks etc.

 

Unfortunately this is not the case for any of the dual port RT targets from NI. The secondary port is really a second class NIC. It has limited configuration options. It does not support DHCP, you cannot specify a gateway for it - and the code to do programmatic changes to its configuration is not easily available.

 

Please make the two ports fully interchangable. Port 1 or 2? It should not really matter which one you use.

 

 

When running a VI in development mode while targeting an RT device, you must "Save All" prior to deployment. This is annoying, especially when using SCC. I'm sure that SourceOnly will minimize this effect in LV2010, but the concept still remains: I don't want to be forced to Save All when I don't want my edits (or automatic linking edits) to persist.

If you have an RT target set up with a startup application (ready to be deployed in the field), running a VI on it from the IDE should not change anything permanently. 

 

Today (LabVIEW RT 2013), doing this will not just temporrarily stop the VIs running on the target (from the executable) - as you get warned about, but also cause the RTTarget.LaunchAppAtBoot=True line to be removed from the ni-rt.ini. So the startup application will not be launched the next time the device is started up, rendering your device useless in the field. Why?

 

- We had an incident where we narrowly escaped such a scenario. The RT target was embedded into a cannister that was about to be sealed, but an unforseen issue made it necessary to run a special test on it, with a VI from the IDE. The startup application in this case provides the only way into the system once the cannister is sealed (no Ethernet access, just RS485), so having it no longer start would be a catastrophy. No one expected running the VI would actually change anything permanently. We tested it of course, and saw that it stopped the startup application (and so we loaded an image of the correct setup afterwards to be sure all changes were removed), but it would be much better and more intuitive if no such permanent and fundamental changes occured (if actually possible to implement in a such a way).

 

 

Many of the features that are not supported on LinuxRT are things that one would expect not to work (due to the underlying technologies), but why no menu and cursor functions? 

 

The lack of menu support in particular means that most GUIs have to be customized to run on the target....even though Xfce should be perfectly capable of handling them in their original design... I was really hoping we could port some of our GUIs straight to the embedded GUI and replace our  industrial computers immediately with cRIOs...(the differences in appearances are easier to handle, after all we use system controls and take cross-platform variations into consideration already).

 

Now we'll have to (decide if we want to) spend time on customizing the GUIs.Smiley Sad

The SVE on a windows based platform acts as a OPC-DA server. Due to the requirements for DCOM, this is not possible on real-time target. However, as OPC-UA is gaining traction, I would find it very useful to have the SVE act as an OPC-UA server for integration with 3rd party systems (SCADA, IIoT).

 

I know that there is the OPC-UA API palette, however, this takes more time to setup than creating a shared variable (i.e. a tag) and moving on with the application development. If update rates are slow enough (500-1000ms), I have found the shared variable to be more than adequate for my applications (500-800 NSVs), so I'm not looking for granular control over how I send data out of the cRIO system. Ease of use is my primary concern.

The cRIO chassis can only be configured to to use one time server for time synchronization. If that time server fails, the only recourse is to detect that in some way, edit the ni-rt.ini file, and then re-boot the controller. This is rather clumsy, and it would be helpful to have alternate IP addresses.

 

Sometimes, you really just want a RT front panel. Of course, there is no real front panel, but when you run in interactive mode Labview is automatically setting up network communication to pull data from the RT target and push data to the RT target. Wouldn't it be great if you could just convert that whole front panel into a basic host VI? Right now, you have to manually convert all controls and indicators to shared variables. Granted, this does force you to be very careful about limiting the number of network-shared items that you have, but sometimes you really just want to run the VI in interactive mode...but deployed.

Untitled.png

 

Or, better than that, convert everything into a web service and automatically build a silverlight UI (using Web UI Builder) which is hosted on the cRIO. Anything that provides you with a quick and easy way to convert from the rt debugging UI to a basic host VI would be great.

Wouldn't it be nice to have a native LabVIEW XML parser available on real-time targets? Storing your config data in XML rather than in Config-ini files is more flexible, techniques like XMLRPC would be easier to implement etc.
Yes I  know about the third party EasyXML library, but I don't want to spend extra money as we are already paying for LabVIEW Smiley Wink

Currently viewing, testing or configuring NI-9862 Modules in a cRIO using NI-MAX needs a lot of effort. It requires:

- Installation of the complete Labview Realtime and FPGA development suite on the connected PC

- Setting up a Labview project including the NI-9862 Modules and an empty FPGA VI

- Compiling the emty FPGA VI to a FPGA bitmap file

- Starting the FPGA VI

Without these steps the NI-9862 Modules are invisible in NI-MAX

 

Proposed improvement:

- NI-MAX should include a default FPGA bitmap file that includes the communication with NI-9862 modules

- When the user connects to the cRIO with NI-MAX, the current cRIO configuation should be automatically saved to a backup and the default bitmap file should be activated

- When the user disconnects, the backup should be restored

 

Advantage:

- viewing, testing or configuring NI-9862 Modules in a cRIO could be possible just by starting the NI-MAX and connecting to the cRIO, as simple as with any standard I/O modules.

Given a project topology like this:

 

Windows PC Host  <-> cRIO-9024 <-> NI-9114 backplane <-> NI-9144 EtherCAT #1 <-> NI-9144 EtherCAT #2   which is run in hybrid scan mode,   during development I wish that it were possible to, for example, tell the project to run without EtherCAT #2 being physically connected, instead using virtual/simulated IO. As things stand now, when I try to switch from Configuration to Active mode, I get an error saying that "the slave device cannot be found".

 

More generally, I often find myself thinking that the project explorer needs a good way to "comment out" various pieces of the project without having to resort to "Remove From Project".

I had posted this idea to the LabVIEW idea exchange before, but it makes more sense to have it here.

http://forums.ni.com/t5/LabVIEW-Idea-Exchange/Allow-RT-FIFOs-to-be-of-type-LV-Class/idi-p/2426726

 

It would be very useful that RT FIFOs could be of type lvclass as long as the class' private members are of static types (perform the same check that is done for clusters when you try to use them as the type for RT FIFOs).

Any controller that contains either a USB or SDIO card would have a bootstrap loader, available when the controller is in safe mode, that would allow the controller to be loaded up to operational status (OS, Drivers, RTEXE, etc...) from a deployment image contained on the removeable media. This would allow a replacement controller to be unboxed and installed in a stand alone system without the need to install software from a development computer.

 

This is one of those things that sort of bridges between a hardware and software request.

One common request for production systems is some kind of monitoring/surveillance.

The current NI System Monitor 1.1.1 lacks official support for the recent LabVIEW versions and the most recent RT controllers.

For an updated version I would love to see some kind of S.M.A.R.T. support (including wearout indicators for SSDs).

If the access of the S.M.A.R.T. is technically not possible during normal realtime operation, then it would be nice to get that feature when running in save mode.