Unifying MSc Physics and MSc Astrophysics Problem-Based Learning with LabVIEW NXG: A Critical Review

NI Academic Users Forum 2019

Dr Richard James Lewis
Cardiff University School of Physics and Astronomy (PHYSX)
Overview

Plan: transitioning core modules to NXG 2.1
- Summary of MSc activity at Cardiff PHYSX
- Core MSc module structure: then and now

Execution: learning and application
- Impact of NXG on LabVIEW language learning
- Impact of NXG on problem-based learning
- Logistical issues and their solutions

Outcome
- Student reception of new core module
- Future MSc core module design
- Summary of LabVIEW NXG 2.1 critique
Plan: transitioning core modules to NXG 2.1
Summary of MSc activity at Cardiff PHYSX

Programmes
• MSc Physics
• MSc Data-Intensive Physics
• MSc Compound Semiconductor Physics
• MSc Astrophysics
• MSc Data-Intensive Astrophysics
• MSc Gravitational Wave Physics (2019/20)

Cohort of 2018/19
• 24 students (11 Physicists, 13 Astrophysicists)
• 2:1 minimum entrance requirement
• Dedicated co-located MSc teaching facilities
• 20cr common core module with LabVIEW NXG
Transitioning core modules to LabVIEW NXG

Major restructuring for 2018/19

- Merger of core autumn physics and astrophysics modules
- MSc Physics pattern adopted for this 20cr module:
 - Practical introduction to LabVIEW (10cr)
 - Student-lead micro-projects (10cr)
- Transition from LabVIEW 2015 to LabVIEW NXG 2.1*

Why LabVIEW NXG?

- **Pedagogy**: gentler, more logical learning curve
- **Logistics**: useful from day 1, therefore always relevant

What do we want to maintain / enhance?

- Students feel valued as part of our academic community
- Exceptionally high student feedback score average of 93
Old structure (LabVIEW 2015): drills to application

Week 1: projects, front panel, block diagram, dataflow, Express VIs, AAP
Week 2: arrays, clusters, file I/O, case structures, loops, sub VIs, errors, style
Week 3: functional specifications, efficient VI engineering
Week 4: interfacing with hardware, MAX, VISA, AAP with hardware
Week 5: development paradigms, type definitions, DAQmx
Week 6: error handling, tunnels, shift registers, classic state machines
Week 7: event structure, event-driven state machines, functional global variables
Week 8: queues, queued state machines
Weeks 9 to 11: applying LabVIEW to micro-projects
Planned (LabVIEW NXG 2.0): DAQ-first, applications throughout

Week 1: a guided tour of LabVIEW NXG, establishing common and linked contexts

Week 2 (AAV and IO I): no coding required, NXG functionality, DAQ on 1 and 2 channels

Week 3 (AAV and IO II): coding drag and drop, DAQ on 1 and 2 channels, images

Week 4 (AAV and IO III): coding from scratch, DAQ on 1 and 2 channels, images

Week 5 (looping and iteration I): looping and iteration, looping AAV code

Week 6 (looping and iteration II): classic state machines

Week 7 (looping and iteration III): event-driven state machines

Week 8 (looping and iteration IV): queued state machines

Weeks 9 to 11: continuing to apply LabVIEW to micro-projects
Result (LabVIEW NXG 2.1): DAQ-first, applications throughout

Week 1: a guided tour of LabVIEW NXG, establishing common and linked contexts

Week 2 (AAV and IO I): no coding required, NXG functionality, DAQ on 1 and 2 channels

Week 3 (AAV and IO II): coding drag and drop, DAQ on 1 and 2 channels, images*

Week 4 (AAV and IO III): coding from scratch, DAQ on 1 and 2 channels, images*

Week 5: module recess

Week 6 (looping and iteration I): looping AAV code and classic state machines

Week 7 (looping and iteration II): classic and event-driven state machines

Week 8 (looping and iteration III): event-driven and queued state machines

Weeks 9 to 11: continuing to apply LabVIEW to micro-projects
Execution: learning and application

Impact of NXG on language learning
Impact of NXG on language learning

Summary of targets for NXG course
- Everything in projects (no slides)
- Every session recorded on Panopto
- No (nasty) surprises, anticipate student issues
- Physics and Astrophysics examples throughout

Lots to talk about, so have to be selective:
- Experience of keeping everything in projects
- NXG interface advantages and issues
- (Somewhat) nasty surprises, workarounds
Experience of keeping everything in projects

• Dramatically simplifies distribution logistics, projects enforced, real directories
• Full integration of session questionnaires, exercise scripts, and their solutions
• Live streaming of session capture allows students to review during hands-on
• Sessions much more dynamic than for 2017/18, with far less start-and-stop

• Formatting tools in NXG for free text comments are very simplistic
• Workbooks are much more sophisticated, but not available to end user

www.cardiff.ac.uk/physics-astronomy
A contact session can be contained entirely within a LabVIEW NXG project. The use of external materials and other applications has been minimised to maintain session flow.
Embracing the “everything in a project” concept allows for unexpected teaching and learning opportunities. Here we can use the course timetable to demonstrate dataflow!
3.1 Bottom-Up Development

In general terms, bottom-up development means:

- Thoroughly planning your application with a functional specification and supporting documents;
- Selecting an appropriate architecture for your application ("script", state machine, etc);
- Writing subroutines / functions / classes that encapsulate the functionality that you will require;
- Thoroughly testing elements of functionality with combinations of these subroutines / functions / classes;
- Writing the boiler-plate code for the main application;
- Building up the functionality by inserting calls to subroutines / functions / classes directly into the boiler plate code, thoroughly testing as you go.

In LabVIEW terms, bottom-up development means:

- Thoroughly planning your application with a functional specification and supporting documents;
- Selecting an appropriate architecture for your application ("script", state machine, etc);
- Generating a LabVIEW project with the appropriate application template;
- Encapsulating required functionality in fully-functional and documented subVIs / classes / type defs;
- Testing elements of functionality with combinations of these subVIs / classes / type defs;
- Generating the main VI, together with all states (if a state machine), logic loops, etc required;
- Building up the functionality by inserting subVIs / LabVIEW classes / type definitions directly into the main VI, thoroughly testing as you go.

We will now develop a simple calculator application bottom-up...
The text formatting tools in NXG 2.1 apply to entire text blocks. In this Diagram we would like to be able to shade the boxes and bold headings, but this is not possible.
NXG interface advantages and issues

- NXG UI is vastly superior to LabVIEW UI in almost every usability aspect
- Panel and Diagram zoom enhances delivery, recording, and development
- Docking constants and the properties pane really help with clarity

- The ability to zoom necessitated a rethink of what “good style” means
- NXG is noticeably slower and less stable compared to LabVIEW
- Some consistency issues: analysis panel only available for waveforms, e.g.
The zoom function is a killer feature on the Diagram. It is particularly useful in session recordings to remove visual clutter.
The zoom function works equally well on the Panel. It is particularly useful in session recordings to remove visual clutter.
The zoom function aids exploration from the student’s perspective, allowing clearer focus on individual areas of code.
(Somewhat) nasty surprises: some workarounds required

- Analysis panels (from direct acquisition / capture) unreliable across PCs
- Cannot distribute compiled C Node code (crashes target PCs)
- G Types do not always work as expected (i.e. as strict type definitions)
- LabVIEW NXG 2.0 code will not load at all on LabVIEW NXG 2.1 machines

- Have reported the bugs to NI, will provide code to reproduce the errors
The analysis panel is not available for all data types. Attempting to invoke the analysis panel occasionally crashes NXG 2.1.
C Nodes in NXG 2.1 have a tendency to crash when projects are run on PCs other than the original machine.

Calculates the surface brightness per unit frequency (Wm⁻²Hz⁻¹sr⁻¹) of a blackbody radiator, Bv(T):

\[
Bv(T) = \frac{(2\pi^2c^2kT)}{h} \exp\left(\frac{h}{kT}\right)\right) - 1
\]

where
- \(v \) = frequency (Hz)
- \(T \) = temperature (K)
- \(h \) = Planck constant (Js)
- \(c \) = Speed of light in vacuum (m/s⁻¹)
- \(k \) = Boltzmann constant (Jmol⁻¹K⁻¹)
Execution: learning and application

Impact of NXG on problem-based learning
Impact of NXG on problem-based learning

Aims: LabVIEW NXG course contact sessions
- Start useful, stay useful
- Flatten the learning curve
- Remain relevant to Physics and Astrophysics
- Leverage NXG’s strengths (UI, projects, etc.)
- Retain old module’s USPs (funcspecs, etc.)

Aims: Student-lead micro-projects
- Start useful, stay useful
- Allow more sophisticated applications earlier
- Provide a common language for related projects to encourage collaboration
- Retain old module’s USPs (community, etc.)
Impact of NXG in contact session problem-based learning

- Flashes of brilliance when NXG’s strengths all came together
- Freely-flowing sessions dramatically accelerated learning, made teaching more efficient
- Staying “in project” allowed students to concentrate more effectively on their tasks
- Full retention of original module’s USPs, group work in particular enhanced

- Instability and bugs introduced interruptions in otherwise freely-flowing, dynamic sessions
- DAQ-first concept partially thwarted by crashes, but the concept itself is sound
Impact of NXG in student-lead micro-projects

- This is where NXG really shone: a noticeable increase in efficiency
- Image analysis in particular was found to be much more accessible
- Students explored the language in much more depth than in previous years
- Students progressed much further in the micro-projects than in previous years
- One micro-project formed the basis of an exhibition at a Royal Society Event…
Michelson Interferometer as a LIGO Analogue: prototyped in an MSc Physics micro-project 2018
Execution: learning and application

(Other) logistical issues and their solutions
(Other) logistical issues and their solutions

Point release 2.0 to 2.1 broke compatibility(!)
- No easy way around this; code was re-written
- PCs in PHYSX migrated to 2.1

Some code elements crashed on lab PCs
- Hard to pin down; some PCs worse than others
- Drive towards “safe” implementations
- Avoided these elements in assessments

Freezes, crashes, and bugs
- Very rarely show-stopping in practice
- Bugs reported to NI
Outcome
Student reception of new core module

Student module evaluation scores

<table>
<thead>
<tr>
<th>Academic Year</th>
<th>LabVIEW Version</th>
<th>Score / 100</th>
</tr>
</thead>
<tbody>
<tr>
<td>2018/19</td>
<td>NXG 2.1</td>
<td>86</td>
</tr>
<tr>
<td>2017/18</td>
<td>2015</td>
<td>94</td>
</tr>
<tr>
<td>2016/17</td>
<td>2015</td>
<td>90</td>
</tr>
<tr>
<td>2015/16</td>
<td>2015</td>
<td>94</td>
</tr>
</tbody>
</table>

Student feedback

• Overall very positive, all students felt they got something positive from the module (projects)
• Astrophysicists see the value of LabVIEW, but some would have preferred to develop their Python instead
• LabVIEW generally valued, especially on projects
Future MSc core module design (2019/20)

Scaling (>30) and broadening of MSc student cohort
• MSc Gravitational Wave Physics comes online for 2019/20
• Additional micro-projects and relevant examples required
• Currently reviewing language teaching structure for 2019/20

Will we use LabVIEW NXG for 2019/20 or revert to 2015?
• Contingent on outcome of module review
• Will evaluate NXG 3.0 for stability improvements
• Now have full resources (inc. videos) for 2015 and NXG

Will we use NXG for the advanced programming module?
• Main problem is the lack of RIO support in NXG
• More difficult to migrate advanced materials to NXG
• Retain LabVIEW 2015 for now (considering 2018 SP1)
Summary: critique of LabVIEW NXG 2.1 for teaching and micro-projects

- **Usability**: excellent for micro-projects, more variable for teaching, but good.
- **Reliability**: NXG can be slow, crashy, and buggy. Often masks true potential.
- **Materials**: can stay in-project, so more efficient. Really need workbooks!
- **Student reception**: excellent for micro-projects, overall positive for teaching.

- **Overall**: NXG 2.1 has its issues, but the potential for brilliance is there.
Contact details

Dr Richard James Lewis
Director of Postgraduate Studies
School of Physics and Astronomy
Cardiff University

Tel: +44(0)29 2087 5433
Email: LewisR54@cardiff.ac.uk
URL: https://tinyurl.com/y94cfmk5

Case studies, presentations

Transitioning MSc Physics Teaching to LabVIEW NXG 2.0: From Drills to DAQ-First (NI AUF 2018)

Reflections on LabVIEW as a Common Language for Community and Skill Building (NI Days 2017)

LabVIEW as a Common Language for Community and Skill Building (NI AUF 2016, NIWeek 2017)

MSc Physics Students Take Ownership of their Learning with LabVIEW (NI EIA 2016)

Bringing the Research Group Ethos into Taught Masters Learning (VICE/PHEC 2016)