Thank you for attending NIWeek 2017.
Anand Krishnan
Ganesh Devaraj

Soliton Technologies

Architecting a PXI Platform for USB-PD, I2C, and Reliability Testing

anand.krishnan@solitontech.com ganesh.devaraj@solitontech.com
Agenda

- Session Introduction
- Customer Technical Requirements and ‘Scaling Plan’
- Considerations for PXI Instrument Stackup selection
- Software Scalability and Firmware Regression considerations
- Suggested Solution for Maximum ROI from investment in PXI
- Conclusion
Architecting a validation platform that scales better across Semiconductor Product Lines
Tests:

- Load and Line Sweeps on a Power Regulator
- Dynamic Response of power rails to change in load

Requirement 1:

Product Family:
Low Dropout Regulator
Tests:

- Digital protocol Validation
 - Timing Sweeps on I2C, SPI Lines
 - Voltage Sweeps on I2C, SPI Lines
- Fault tolerance and Recovery of I2C, SPI

Requirement 2:

Product Family:
Low Dropout Regulator
Tests:

- Reliability Test across Temperature, Ionizing Radiation etc
- Lower sample rate continuous acquisition of power rails and digital test signals
- Context based fine logging upon configurable ‘failure events’
Tests:
- Power Supply DC and AC tests
- Timing Response tests to USB_PD Commands
- PD spec compliance power negotiation (CC) lines
- Physical layer tests
- Firmware Validation
Instrument Stackup Decision Points

- List of SMU channels, voltage, current levels, hardware-timed acquisition memory, sample rate
- List of Analog Outputs, Ranges and Update Rate
- List of Analog Inputs, Sample Rate
- Need for synchronization between the SMU channels and the Analog Inputs and Outputs for performing timing measurements
- Granularity of timing skew required for protocol timing characterization
- Voltage level control on protocol digital lines
- Current limit control on digital lines (for control of rise and fall times)
Short Term versus Long term Considerations

Hardware

<table>
<thead>
<tr>
<th>Kind of IO</th>
<th>Short Term Instrument Choice Requirement 1-3</th>
<th>Longer Term instrument Choice Requirements 1 through 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Rails (Input and Output)-+/- 60V, +/-10A pulsed</td>
<td>4139, 4145</td>
<td>4139, 4145 (assuming V,I levels to not change from DUT to DUT)</td>
</tr>
<tr>
<td>Digital protocol lines</td>
<td>8451 (for 1 only)</td>
<td>7965R with 6581 FAM for timing validation and Transceiver FAM for USBPD</td>
</tr>
<tr>
<td></td>
<td>65XX (for 1,2,3)</td>
<td></td>
</tr>
<tr>
<td>Analog Inputs</td>
<td>6115 (for 1 and 3)</td>
<td>7965R with 578X FAM for USBPD and power rail logging</td>
</tr>
<tr>
<td>Analog Outputs</td>
<td>Not needed</td>
<td>7965R with 578X FAM for USBPD</td>
</tr>
</tbody>
</table>
Short Term versus Long term Considerations

Software

<table>
<thead>
<tr>
<th>Design Decision</th>
<th>Short Term Design Choice Requirement 1-3</th>
<th>Longer Term Design Choice Requirements 1 through 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>DUT Control Module</td>
<td>NI-HSDIO based driver with Register Map Module</td>
<td>PXle-7965R + 6581 based driver with Register Map Module</td>
</tr>
<tr>
<td>Buffered AI Acquisition Module</td>
<td>Requirement 1- Finite Multifunction IO/SMU Capture Requirement 3- Buffered MultiFunction IO capture</td>
<td>Buffered continuous stream using 7965R+Transceiver FAM. Not limited by memory on 7965R</td>
</tr>
<tr>
<td>Sequencing Engine</td>
<td>LabVIEW GUI Based</td>
<td>Test Stand Based</td>
</tr>
<tr>
<td>Test Condition Management</td>
<td>Iterator GUI called in LabVIEW</td>
<td>Iterator GUI called in TestStand</td>
</tr>
</tbody>
</table>
Firmware Validation on PMIC/USBPD - Use Case Based

- Firmware exposes bunch of API calls - Each device mode is configured by grouping a set of API calls (Macros)
- In Firmware functional validation, the often-used modes are set up for functional verification (stimulus response)
- A generic test sequencer runs each of these modes and logs data using standard data logging APIs

Firmware Validation- API-regression Based

- The previous approach covers dominant use cases of the firmware but does not cover each parameter combination for each API
- Definition Engines can be built that will auto populate different API input combinations for each API exposed by the firmware (through parsing the API header file)
- User can then select which APIs and parameter combinations to pick and which to ignore
- The resulting definition file can be executed for every release version of the firmware/ APIs
PXI Stackup for MultiFunction Test Platform

I2C DIGITAL INTERFACE VALIDATION, FAULT TOLERANCE

FLEXRIO

SMU

TRANSCEIVER FAM

USB PD VALIDATION

MULTIFUNCTION IO

DIGITIZER FAM

RELIABILITY TEST

RELIABILITY TEST
Cost Advantages from Forethought in Scaling Needs

<table>
<thead>
<tr>
<th>Approach</th>
<th>Instrument List</th>
<th>Approx HW Cost (USD)</th>
<th>Approx SW Cost (USD)</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fragmented</td>
<td>4139, 4145, 8451, 65XX, 6115, 79XXR, Transceiver</td>
<td>46,000</td>
<td>50,000</td>
<td>Fully automated, Software Triggered, 1 Real Time FPGA Module without Sequencer leverage</td>
</tr>
<tr>
<td>Consolidated across product lines</td>
<td>4139, 4145, 79XXR(x2), Transceiver, Digitizer FAM</td>
<td>43,000</td>
<td>33,000</td>
<td>Fully Automated, Hardware Triggered, 2 Real Time FPGA Modules with full Sequencer leverage</td>
</tr>
</tbody>
</table>
Questions
Before you go, take the survey.
Stay Connected During and After NIWeek

ni.com/niweekcommunity
facebook.com/National Instruments
twitter.com/niglobal
youtube.com/nationalinstruments

Please provide feedback on this session via the NIWeek Mobile App