12 hour IC Characterization with a PXIe-2738 Matrix Switch Card

Matthew Beach
Texas Instruments
m-beach@ti.com
Outline

- Introduction
- Hardware
- Software
- Data Analysis
- Conclusion
- Acknowledgements
- Questions
Problem Statement / Introduction

- Validation of new silicon takes too long!

- Automation speeds up the measurements
 - Allows for many more conditions
 - Does not help speed up setup

- Need to automate the setup!
 - Relay matrix card allows the setup to change programmatically
 - Can connect any instrument to any DUT pin
 - Allows for consistent and repeatable measurements
 - Eliminates incorrect setups
PGA460 Ultrasonic Sensor Signal Conditioner

- **Application**
 - Ultrasonic Radar
 - Automotive Park Assist
 - Lane Departure and Collision Warning
 - Object distance and position
 - Presence and proximity Detection

- **Features**
 - Single Transceiver or Transmitter/Receiver pair operation
 - Dual NMOS Low side Drivers with Configurable Current Limit
 - Differential Low noise Echo Amplifier provides programmable gain up to 90dB
 - 12-bit Analog to Digital Converter
 - System Diagnostics Input
 - Integrated State Machine with EEPROM
 - Programmable Threshold / Time settings
 - Integrated Temperature sense
 - One Wire Time Command Interface
 - One Wire UART Interface
 - Fast TTL Level USART Interface
 - AEC-Q100 Qualified
Solution

- PXIe-2738 Matrix Switch card
 - 8x32 (2-wire) matrix configuration with Kelvin connections
 - Up to 100V and 2A
 - Allows any instrument to connect to any DUT pin
- Other matrix configurations available
 - 4x64, 16x16, 4x136, etc.
 - Can combine multiple cards to create custom configurations
- Multiple cabling options
 - 160 pin DIN connector
 - 4 D_SUB connectors
 - Bare wire connector
Connect any DUT pin to any instrument

- 8x32 card allows for 8 buses and 32 DUT pins/instruments
PGA460 Evaluation board

- Board can be used for automation or not
 - Has banana jacks to connect all instruments to relay matrix
 - All DUT pins are hard wired into matrix
 - DUT pins also have banana jacks and test points for non-automated setups
Software Implementation

- Code runs on National Instruments TestStand
 - Ability to loop parameters
 - VPWR levels
 - Temperatures
 - Which DUT blocks are tested (output drivers, ADC, temp sensor, etc.)
 - Additional “Quick_Run” setting for debug
 - Skips long loops for quicker debugging
 - Different parameters inside some blocks
 - Extra temperatures for Temp Sensor
 - Load conditions for LDO’s
 - Voltage settings for IOREG block
 - etc.
Switch control

- Simple VI’s were written to control matrix
 - Three different VI’s are called in TestStand
 - Open all relays
 - Connect an array of pins/instruments to any row
 - Disconnect an array of pins/instruments to any row
 - Checks to make sure switch not already open/closed
 - ENUM is used to name the DUT pins and instruments
Analysis of data

- Data logging stores data in database
 - Save data in csv file and import into analysis template
 - Can quickly review data
 - Data is also imported into spec database for compliance
Switch control Update

- Relays are not evenly used
 - Vary from <100 to >5000 uses
 - 100M cycles mechanical
 - 500k cycles at 30V/1A
 - Still well below expected end of life

Expected mechanical relay life.......................... 1×10^8 cycles

Expected electrical relay life
- $\leq 30 \text{ mV, } \leq 10 \text{ mA}$ resistive.......................... 2.5×10^6 cycles
- 30 V, 1 A... 5×10^5 cycles
- 30 V, 2 A... 1×10^5 cycles
- 60 VDC, 1 ADC resistive................................. 1×10^5 cycles

Note Relays are field replaceable. Refer to the NI Switches Help at ni.com/manuals for more information about replacing a failed relay.
Random variable from 0 to 7 created at beginning of each test execution
- Variable added to existing row choice
- Will make sure each column now has even number of uses across each row
- To even out column use will need to be done through different projects

Row variable is a random integer from 0 to 7. A new value is assigned at the beginning of each test execution.

Instrument handle

Column

Relay needs to be closed
Conclusion

- 94% of planned tests completed with full automation
 - Coverage in still increasing
 - Latest silicon evaluation completed in <24 hours
 - Tested across three VPWR levels and three temperature settings
- Reduces cost
 - Eliminates purchasing of additional equipment
 - Can now mux the same piece of equipment to multiple pins
- Reduces time to evaluate new parts
 - Do not have to manually move instruments to different pins
 - Testing continues to run at night
- Allows for remote debug and development
 - Can modify the setup programmatically
Acknowledgments

- Vidya Asokraaju (Texas Instruments EDA)
- Joe Shutz (National Instruments)
- Omar Vicente (Texas Instruments MSA)
- Fei Xu (Texas Instruments MSA)
Before you go, take the survey.
Questions?

Matt Beach
Texas Instruments
m-beach@ti.com