Community Browser
Showing results for 
Search instead for 
Did you mean: 
Member NationalInstruments ‎03-16-2017 05:23 AM

Summary: Embedded World 2017

Embedded World is one of the world’s largest gatherings for embedded technology, bringing more than 30K people to Nuremberg, Germany from across the globe to experience the latest tech impacting the embedded industry. Here's a summary of what happened at the event, though our NI lens.


Member NationalInstruments ‎03-08-2017 04:13 AM

Why TSN is so Important for Embedded This Year

So why is time-sensitive networking so important for embedded this year? We address this directly in our TSN keynote at NIWeek 2016 last fall. Here’s an updated transcript of that keynote, featuring our own Jamie Smith and Todd Walter, Intel’s Kevin Stanton, and Cisco’s Paul Didier. You can also watch the keynote above.


Member NationalInstruments ‎03-08-2017 03:35 AM

3 Things to Watch for at Embedded World 2017

The internet of things (IoT) continues to capture headlines around the globe, as technology companies everywhere begin to leverage the opportunities and competitive advantages connected devices bring to business. 2017 will be a big year for embedded monitoring based on the industrial internet of things (IIoT): millions of connected monitoring devices providing big data about machine/grid performance. Embedded World 2017 in Nuremberg will give us a great look at how companies are leveraging the IIoT, and how the industry is adapting.


Member Jamie_Smith ‎01-11-2017 09:42 AM
Member NationalInstruments ‎12-17-2016 08:00 AM

10 Best Practices for IoT Implementations

This summer we commissioned a study from research agency IDC, studying the best practices for internet of things (IoT) implementations and how companies can prepare themselves for IoT-based operations.


Here are the best practices for taking on any IoT project as a business:


  1. Have a clear understanding of business objectives and what business value an IoT project will deliver.
  2. Start with an objective that has organizational pull and already has identified business value
  3. Have an executive champion who will make the project a priority. 
  4. Have a start-up mentality. Start small, such as with a pilot project, and establish clear milestones. 
  5. Build in security from the start. Security and privacy concerns are the number 1 hindrance to the deployment of an IoT solution. 
  6. Own the data that will result from the project, and know if you’ll manage it yourself or will need to have others manage it for you. 
  7. Connect the IT and operations teams in your org to the end customer that will be served by the IoT project. This connection along the value chain of your project provides a level of trust that will smooth its approval, implementation, and use. 
  8. Small and medium-sized businesses with limited IT departments should plan on having systems integrators and other partners work onsite as much as possible. 
  9. Use products based on standard platforms as opposed to custom platforms as possible. Standards help ensure the compatibility and scalability of the end solution. 
  10. Use products that are flexible and extensible. Ideally based on software, such products can adapt after their initial deployment to evolving requirements with no hardware changes.

Companies that’ve already worked to define and implement IoT projects and access the IoT’s value are trailblazing an immature and evolving environment.

By applying these best practices for implementing IoT in your org, you can access the benefits of this huge emerging market while avoiding the significant pitfalls experienced by these trailblazers.


Here’s the full whitepaper with more >>>

Member NationalInstruments ‎12-15-2016 08:00 AM

Early-Access Technology for Time-Sensitive Networking (TSN)

We’ve built a new pair of cRIO controllers and teamed up with Cisco to enable creation of distributed systems that perform synchronized I/O, code execution, and deterministic communication, all using the latest additions to standard Ethernet. Together those controllers create technology engineers are already using to help vet the technology in ecosystem activities, including the Industrial Internet Consortium TSN Testbed for smart manufacturing.


The tech specs
The technology includes new CompactRIO controllers featuring Intel Atom processors and the Intel i210 TSN-enabled NIC for a high performance control system. These controllers use LabVIEW system design software to maintain synchronized time to the network and expose that time to code running on the real-time processor, as well as the code running on the FPGA.

LabVIEW’s already designed with time as a core concept using structures such as timed loops and single-cycle timed loops.  Now these structures are synchronized to network time which makes it simple for users to tightly coordinate signal processing, control algorithms, and I/O timing with scheduled network transmission and between multiple systems distributed across a network.  Additionally now with TSN these systems can deterministically send data across standard Ethernet networks to create reliable multi-controller coordinated systems.  


How to get early access
To get early access to these new controllers you can:

  1. Join our Time Sensitive Networks on our online Community, where you’ll find example code and documentation, along with more detailed info on hardware and software capabilities, and details on the appropriate products/accessories you need to create deployable TSN systems. 
  2. Sign up for the early access program! We’ll review your submission and follow up when the controllers are ready to ship.

Wait… what’s TSN, again?

Time-sensitive networking (TSN) enables the creation of distributed, synchronized, hard real-time systems over standard Ethernet. These systems use the same infrastructure to provide real-time control and communicate all standard IT data, powering convergence of control, measurement, configuration, UI and file exchange infrastructure. TSN’s expected to fundamentally change system design and maintenance by offering network convergence, secure control traffic and high performance!


Our new line of TSN-enabled controllers >>>

Member NationalInstruments ‎12-14-2016 08:00 AM

6 Problems to be Solved by the IoT

We commissioned a study from research agency IDC, studying the best practices for internet of things (IoT) implementations and how companies can prepare themselves for IoT-based operations.



The study found the following key drivers necessary to prepare business operations for the adoption of IoT implementations:


  • Business uptime. Customers, competition, and government increasingly require organizations to function 24 x 7. Orgs are turning to implementing IoT as a way to maintain operations continuously and provide the tools to respond quickly and efficiently, and are looking to their solution providers — technology providers, contract manufacturers, OEMs, and so forth — to enable constant uptime and work in concert to provide new solutions that enable additional services. Example: the installation of sensors on equipment to enable remote diagnostics and predictive maintenance of systems. This enables operations to anticipate and schedule system downtime rather than shut down operations. Companies are depending on their technology providers to integrate systems without disrupting operations.
  • Automation. Orgs have realized 24x7 operations are beyond ordinary human abilities to assimilate incoming requests and respond efficiently. They’re looking to IoT to embed machine intelligence into their operations and automate complex processes that enable greater worker productivity. Example: embedding intelligence into tools so that the proper specifications (torque, depth, etc) are communicated to the operator and the final reading is taken and documented, verifying the completed operation.
  • Real-time data. Automation requires moving from sporadic, limited data collections to continuous, expansive, real-time data collection and analysis. IoT enables both the low-level collection of data and rudimentary machine analysis and the high-level human analysis for decision making. Companies are still determining whether to push embedded intelligence to the edge or expand the utilization of cloud capabilities. The operational business model, the model’s demand on data latency requirements, the connectivity environment, and costs are key decision key factorshere.
  • Environmental context. The IoT’s continuous collection of data enables constant input on the environmental conditions in which an organization operates. Data humans would miss can be captured and provide the context for improved understanding of the environmental conditions contributing to a particular outcome. The expanded usage of a wide array of sensors is driving the growth of data, storage, and bandwidth.
  • Connectivity. Connectivity of equipment is a basic building block of efficient operations. When equipment communicates automatically without human intervention, it can fundamentally change an organization’s capabilities, both human and machine. For example, internal applications can connect to remote applications. Humans can concentrate on enabling higher capabilities, such as managing, organizing, and analyzing the incoming data rather than just gathering data manually from disconnected systems. While there are a wide array of existing communication protocols, there are a number of organizations working to unify the various emerging standards. Location, environmental conditions, and operational demands are important considerations in the selection of the communication method and protocols.
  • Smart City. While orgs may be thinking primarily about their internal operations, IoT opens the prospect of interconnectivity with other IoT-enabled organizations. Scaling of cooperation from a single partner to a constellation of ecosystem suppliers will eventually enable Smart City IoT. Infrastructure, replacement cycle expectations, ownership and leasing contracts, and the potentially wide variety of governmental agencies necessary for approval must all be taken into consideration. 

Here’s the full whitepaper with more >>>

Member NationalInstruments ‎12-10-2016 08:00 AM

Best Practices for IoT Implementations

IDC Whitepaper


Member NationalInstruments ‎12-02-2016 08:00 AM

So… what’s mmWave? And what does it mean for 5G?

Revolutionizing the wireless world of technology 


Member NationalInstruments ‎11-26-2016 08:00 AM

Hyundai: Walking With Robots

Changing mobility with wearable technology 


  • IoT and IIoT
Member NationalInstruments ‎11-17-2016 08:00 PM

Smart Devices Require Smarter Testing Systems

Lower your cost of test and time to market


Member NationalInstruments ‎11-15-2016 08:00 AM

Wi-Fi Gets More Efficient

An Introduction to 802.11ax High-Efficiency Wireless


Member NationalInstruments ‎11-07-2016 08:00 AM

Announcing: Time-Sensitive Networking Testbed with the IIC

Exciting news for the Industrial Internet of Things (IIoT)


Member NationalInstruments ‎10-31-2016 08:00 AM

NI and Optimal

Real-Time Data Solutions, All over the Supply Chain!


Member NationalInstruments ‎10-30-2016 08:00 AM

WiFi Goes to the Farm: How CompactRIO Helps FireFly Equipment

How CompactRIO Helps Firefly Equipment


Member NationalInstruments ‎10-25-2016 09:00 AM

NI + IBM + SparkCognition’s Condition Monitoring Testbed: Bringing Embedded Intelligence to Predictive Maintenance

Condition Monitoring Testbed


We’re bringing an unprecedented level of interoperability to operational technology (OT) and informational technology (IT).


Our open, software-centric platform forms the bedrock of the Condition Monitoring Tested at the forefront of machine learning. By adding SparkCognition’s data analytics to the mix, the testbed processes big data much faster - allowing you to proactively avoid unplanned equipment fatigue and critical asset failure faster by having advanced insights into equipment health and remediation solutions. The technology supports some serious operational improvements:


  • Increased operational efficiencies
  • Decreased maintenance costs
  • Increased safety


In a new age of big analog data, machine learning is a primary way to harness information. The ability to collect raw data and derive insights to improve operations, equipment and processes offers huge cost savings and competitive advantages as data warns operators about component failures before they occur, identify sub-optimal operating conditions, and assist with root-cause analysis.


More info about the new testbed >>>

Member NationalInstruments ‎10-19-2016 08:00 AM

It’s About Time: Evolving Network Standards for the Industrial IoT

Smarter, better, and embedded sensing


Member NationalInstruments ‎10-14-2016 12:24 PM
1 Comment