LabVIEW Idea Exchange

Community Browser
cancel
Showing results for 
Search instead for 
Did you mean: 
Post an idea

The recently introduced Raspberry Pi is a 32 bit ARM based microcontroller board that is very popular. It would be great if we could programme it in LabVIEW. This product could leverage off the already available LabVIEW Embedded for ARM and the LabVIEW Microcontroller SDK (or other methods of getting LabVIEW to run on it).

 

The Raspberry Pi is a $35 (with Ethernet) credit card sized computer that is open hardware. The ARM chip is an Atmel ARM11 running at 700 MHz resulting in 875 MIPS of performance. By way of comparison, the current LabVIEW Embedded for ARM Tier 1 (out-of-the-box experience) boards have only 60 MIPS of processing power. So, about 15 times the processing power!

 

Wouldn’t it be great to programme the Raspberry Pi in LabVIEW?

Typical question in development process: "How quickly does my code execute? What runs faster... Code A or Code B?" So, if you're like me, you throw in a quick sequence that looks like this:

 

TimingDuringDevelopment.png

 

AHHH! What a mess! It's so hard to fit it in, with FP real estate so packed these days!

 

We need this:

ProposedTimingDuringDevelopment.png

 Just like my other idea, and for simplicity's sake NI, I would be PERFECTLY happy even if you had to set up the probes during edit mode, and were not able to "probe" while running.

 

 As a bonus, this idea may be extrapolated into n timing probes, where you can find delta t between any two of the probes.

There are times when I leave a VI with modal properties open and then I run the main application that also calls this VI if opened in the development environment. This locks all running windows due to the modal VI. I propose a button in the taskbar that aborts all running VIs OR perhaps a list is opened on right-click of all running VIs 🙂

 

abort_all_running_vi.png

 

 

As soon as we have more complicated data structures (e.g. clusters of arrays), a large portion of the FP real estate is wasted taken up by borders, frames and trims, etc.

 

We need a palette full of "Amish" 😉 controls, indicators, and containers that eliminate all that extra baggage. We have a few controls already in the classic palette, but this needs to be expanded to include all types of controls, including graphs, containers, etc.

 

A flat control consists of a plain square and some text (numerical value, string, ring, boolean text, etc). A flat container is a simple borderless container.  A flat graph is a simple line drawing that would look great on a b&w printer. A flat picture ring looks like the image alone.

 

They have a single area color and a single pixel outline, if both have the same color, the outline does not show. They can also be made transparent, of course. If we look at them in the control editor, there are only very few parts.

 

Now, why would that be useful?

 

Let's have a look a the data structure in the image. There is way too much fluff, distracting from the actual data. If we had flat objects, the same could look as the "table" below. Note that this is now the actual array of clusters, no formatting involved! It is fully operational, e.g. I can pick another enum value, uncheck the boolean, or enter data as in the cluster above.

 

Many years ago in LabVIEW 4, I actually made a borderless cluster container in the control editor and it looked fine, but it was difficult to use because it was nearly impossible the grab the right thing with the mouse at edit time.

 

The main problem of cours is that the object edges completely overlap, making targeted seletion with the mouse impossible. (For example the upper right corner pixel is the corner of an array, a cluster, another array, and an element at the same time.)

 

So what we need is a layer selection tool that allows us to pick what we want (similar to tools in graphics editing software). It could look similar to the context help shown in the picture with selection boxes for each line. Picking an object would show the relevant handles so we can intereact with the desired object. Another possibility would be to hover over the corner and hit a certain key to rotate trough all near elements until the right element is selected, showing it's resize handles. I am sure there are other solutions.

 

As a welcome side effect, redrawing such a FP is relatively cheap.

 

Message Edited by altenbach on 06-03-2009 09:20 AM
Message Edited by altenbach on 06-03-2009 09:20 AM

I don't know how many times I've added a case statement post-programming, but I do know that there isn't an easy way to make a tunnel the case selector.  Usually I delete the tunnel and then drag the case selector down and then rewire, there should be an easier way.  For loops and while loops have an easy way to index/unindex or replace with shift register, why can't a case statement be the same?

Case2.PNG 

Case3.PNG 

Title says it all. Have a slider or pull-down that increases or decreases the highlight execute rate.

Problem

When creating an installer for my built LabVIEW application, I really dislike having to choose between including the RTE installer (and having a 100+ MB installer for my application) or not including it (and requiring my users to download and install the RTE as a separate step).  Typically, I'll build two installers at the same time (with roughly duplicate build settings): a full installer w/ RTE and a light installer w/out the RTE.

 

Proposed Solution

What would be much nicer would be if my app's installer were able to download and install the RTE, if necesary.  Actually, this is common practice, these days, for users to download a small installer that then downloads larger installer files behind the scenes.

Auto-indexing of arrays in for and while loops are a nice luxury in LabView.  One option that could save much time would be a menu option to turn on conditional indexing, this would expose a boolean terminal under the auto-index icon to select if the current itteration should add the itteration to the array or skip it.  From an execution standpoint there would only be a minor performance hit (could still preallocate max array size on for loops and automatically return used subset).  This could also work for autoindexed in but would have less use that the autoindeded out case.  I know I have built many conditional arrays inside of a for loop and it requires a case selection and a build array making the code less readable and requires time and thought.  It can also be less efficient than a compiler can do.

 

See the example below which would run a for loop and only build array of < 0.1

 

Conditional autoindex.jpg

Hi,

 

Sometimes we have to check the execution of just a part of a long VI and I use to do is:

- set a breakpoint just before the part,

- run the VI,

- wait for the breakpoint,

- set highlight

- and follow the execution.

 

I believe that would be nice to set the highlight just like breakpoint clicking over the wire and, when the execution reaches it, show the execution.

 

LV_Lamp.jpg

Currently, you can place a probe on a wire while developing, which is an indicator of the data on a wire. I want the ability to CONTROL the data on the wire, with a data forcing mechanism.

 

The implementation would be very simple... right click on a wire, and in the context menu the option "Force" would be right under "Probe." It would pop up a window of the forcing control, and while the VI is running and forcing is set to "Enable", the programmer can control the values that pass on the wire. If the force window were set to "Disable", the data in the wire would be completely controlled by the VI's logic.

 

DataForcing.png

 

I think the implementation by NI could be trivially simple. If you only allow a forcing control to be added during edit mode (not while the VI is running), the force could be added as an inline VI (as denoted by the green rectangle on the wire). The code inside the inline VI would be as follows, and the front panel would be "Data Force (1)" as shown above.

 

ForcingImplementation.png

 

Of course, if you could add a force to a wire during runtime like probes, props NI. But I would be PERFECTLY happy if you could only add these force controls in edit mode prior to running.

 

One level further (and this would be AMAZING, NI, AMAZING): enable and disable certain parts of the cluster that you would like to force and allow the other elements to be controlled by the VI logic. I made the example above because it would be very natural to ONLY force Sensor1 and Sensor2, and letting the output run it's course from your forced input.

Classes? OOP? ... Huh?

Even if you don't (yet) work with LV classes, you may have noticed that they are starting to become increasingly widespread in the LV world. In fact, the excellent new Actor Framework that ships with LV2012 relies heavily on classes. LV classes are great but they can impact on your performance as a developer as your application becomes larger. I'd encourage everyone to click the magic KUDOS button for this idea, since classes will likely affect us all sooner or later!

 

 

The problem:

Most class-based architectures contain some degree of linking. One form of linking is inheritance where parent-child relationships are implicitly defined, and another form of linking arises from nesting libraries where classes (e.g.) are placed inside other libraries.

 

Unfortunately as the linking increases in a project, the IDE starts to become very sluggish! Those who have worked on mid-sized class-based applications know the symptoms:

  • Opening the "class properties" window takes 10 seconds or more
  • Renaming a class brings the editor to a standstill

For many projects these symptoms are a minor annoyance, but as your project grows they can become a serious impediment to productivity. Why should it take over 30 seconds to modify a class's inheritance?!

 

Obviously careful design can reduce linking to some extent, but that just postpones the pain. The reality is that all class-based projects start to suffer from these symptoms once they reach a "resonable" size.

 

 

The idea:

Improve the responsiveness of the LV editor when working with classes.

  • Highly repetitive tasks such as editing a class library's icon deserve a snappy response from the IDE, regardless of how many classes I have loaded!
  • Modifying inheritance is a fundamental operation. It should be quick and easy! (See this related idea)
  • Placing classes in libraries promotes good project organisation. It should *not* bring the editor to a grinding halt!

hierarchy.png

 

Credits:

Others have written about this topic well before me. Here are a few relevant discussions:

Feel free to link more! Smiley Happy

I think it would be nice if LabVIEW was smart enough to know that when I drop a For Loop around scalar inputs it doesn't auto-index output tunnels - but rather uses Shift Registers - for matching inputs and outputs.

The common use case for this is with the Error input/output - it annoys me how it becomes an Array output.

 

As it is already wired, inline and not broken, dropping a For Loop around it should not break my code! 

 

Reference or Class inputs are other use case too - I want to pass the same thing around not create an Array

Shift registers are better than non-auto-indexed tunnels (other option) as they protect the inputs on zero iterations.

 

21826iFF181EE2E7ECE408

 

This would remove one step required for most use cases, speeding up my development experience.

Cluster Size as a Wired Input:

 

  • Easier to see
  • More implicit
  • Nearly impossible to forget to set it (if it were a required input).

 Cluster Size.gif

I propose that Case Selectors should accept any type of reference, and the two cases generated are "Valid Ref" and "Invalid Ref". (This would be very similar to the current behavior of the Case Selector accepting errors with the two cases of "Error" and "No Error".)

 

The current behavior using "Not a Number/Path/Refnum" is very unintuitive. It requires the programmer to use Not Logic (i.e., do something if the reference is "not not valid").

 

ReferencesIntoCaseSelectors.png

 

 

When I have an array of clusters and I want to locate the array index where a specific element of the cluster has a certain value, I need to first build an array from the Array of Clusters and then search that to find the Array element I want:

 code example.jpg

 

It would be nice (and cleaner and likely faster) if I could wire the Array of Clusters into an unbundle by name function and select String[] to get the array of string element to search.

In addition, if the cluster contained nested clusters, I could access them the same way, using the dot notation alrerady supported.  For example, the unbundle would let me select 'cluster1.subcluster2.String[]' to access the subarray of an element.

 

code example2.jpg 

 

I think the Array Element Gap should be sizable. This would facilitate lining up FP arrays with other items on the FP, or simply as a mechanism to add more apparent delineation between elements.

The size should be set in the Properties box, not by dragging the element gap with the mouse - that would add too much "cursor noise".

A new Property Node for this feature would complete Idea.

 

GapSize.png

Hello,

 

As shown in below image we can see that, if I index numeric array and wire it with any of the node from numeric function it gives un-aligned wire whereas as same process if I use Boolean function at output of index it gives well aligned wire.

So due to this numeric function node wire to index out terminal makes our code with full of wire bends which is not as per NI LabVIEW coding standards also.

So here, I want to draw attention for NI, to do some correction to specific numeric function nodes so we can make neat and clean code in LabVIEW.Wire cleanup.PNG

It is time to put a dent in the floating point "problems" encountered by many in LV.  Due to the (not so?) well-known limitations of floating point representations, comparisons can often lead to surprising results.  I propose a new configuration for the comparison functions when floats are involved, call it "Compare Floats" or otherwise.  When selected, I suggest that Equals? becomes "Almost Equal?" and the icon changes to the approximately equal sign.  EqualToZero could be AlmostEqualToZero, again with appropriate icon changes.  GreaterThanorAlmostEqual, etc.

 

AlmostEqual.png

 

 

I do not think these need to be new functions on the palette, just a configuration option (Comparison Mode).  They should expose a couple of terminals for options so we can control what close means (# of sig figs, # digits, absolute difference, etc.) with reasonable defaults so most cases we do not have to worry about it.  We get all of the ease and polymorphism that comes with the built-in functions.

 

There are many ways to do this, I won't be so bold as to specify which way to go.  I am confident that any reasonable method would be a vast improvement over the current method which is hope that you are never bitten by Equals?.

I would like to be able to create executables that don’t require the runtime engine in LabVIEW. Perhaps a palette of basic functions that can compiled without the runtime engine and an option in the application builder for that. I routinely get executables from programmers that don’t require a runtime installation. I just put it on my desktop and it runs. It would be nice that if I get a request, I could create, build, and send them an exe in an email without worrying about runtime engine versions, transferring large installer files to them, etc.

This idea came from customer Jason Willis during an NIWeek 2012 brainstorm session with LV developers. To me, it seemed like a good idea, so I figured I would post it to the community to flesh it out and see what kudos it gets.

 

When you have a reentrant VI, you have the one real VI and many clone VIs. Debugging the clones is hard. One way to make it easier might be to make the probes behave like the breakpoints do.

 

When you put a breakpoint on an individual clone, only that clone gets the breakpoint. But if you put a breakpoint on the real VI, all the clones get that breakpoint. That gives you a way to stop at a point of execution regardless of which clone gets pulled from the clone pool.

 

We could make probes do the same: if you put a probe on a real VI, any time the block diagram of a clone gets opened, a probe would be added to its wires in the same locations as on the real VI. If you removed the probe from the real VI, all the duplicate probes on the clones would go away too. But if you added a probe to a clone, the other clones would not get a probe.